An Evolutionary Economics Approach to Ecosystem Dynamics

Vincent Blijleven – Utrecht University
Joey van Angeren – Utrecht University
Slinger Jansen – Utrecht University
Sjaak Brinkkemper – Utrecht University

Outline

- Introduction
- Core definitions of evolutionary biology and economics
- Assumptions of evolutionary biology and economics
- Innovation in ecosystems
- Diffusion and structural change
- Conclusions
- Future research
Ecosystems

- Frameworks to see the interconnected and multi-granular reality of a set of entities, to order and comprehend their complexity

 - **Business ecosystems**
 - “An economic community supported by a foundation of interacting organizations and individuals.” (Moore, 1993)

 - **Software ecosystems**
 - “A set of businesses functioning as a unit and interacting with a shared market for software and services, together with the relationships among them.” (Jansen, Brinkkemper & Finkelstein, 2009)

 - **Digital ecosystems**
 - “A digital ecosystem is a newly networked architecture and collaborative environment that addresses the weakness of client-server, peer-to-peer, grid, and web services.” (Boley & Chang, 2007)
Ecosystems

Problems experienced:

- Several key definitions have not yet been fully explored
- Lack of an economics perspective on ecosystem evolution

Evolutionary economics perspective to:

- Gain insight in how to apply an economics perspective to study the self-organizing properties of ecosystems
 - Determine the position of a firm in an ecosystem
 - Understand how an ecosystem develops over time (e.g. how technological choices and chance events shape the future structure of an ecosystem)
- Trade-offs can then be considered and balanced to positively impact firm performance as well as the overall ecosystem in which the firm operates
Core Definitions in Evolutionary Biology

- Inheritance
 - Genetic material **passed on** to offspring from parents by means of reproduction

- Variation
 - **Diversity** among a species as a result of genetic mutations

- Selection
 - **Survival or death** of individuals based on superior or inferior physical traits
Core Definitions in Evolutionary Economics

- **Routines**
 - Proven formal and informal procedures organizations rely on during decision making (competences)
 - Firms pass on routines to new employees through teaching and imitation

- **Innovation**
 - Carried out when routines are threatened by competitors.
 - Required to prevent organizations from becoming inert, inflexible, or go bankrupt
 - Leads to ecosystem diversification

- **Competition**
 - Organizations with superior routines/competences survive, others disappear from the ecosystem
 - Market shares, stock valuations, ...
Translated Counterparts

<table>
<thead>
<tr>
<th>Evolutionary Biology</th>
<th>Evolutionary Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inheritance</td>
<td>Routines</td>
</tr>
<tr>
<td>Selection</td>
<td>Competition</td>
</tr>
<tr>
<td>Variation (mutation)</td>
<td>Innovation</td>
</tr>
</tbody>
</table>
Assumptions of Evolutionary Economics

- Bounded rationality
 - Actors have **different and imperfect capabilities** to process and interpret information
 - Information is **not ubiquitously available**
 - Actors therefore display **conservative and risk-avoiding behavior** by relying on routines built up over time
 - Failing to review routines can lead to **path dependent behavior** (Nokia’s tunnel vision – tied to existing customers and products)

- Economies of scale
 - **Entry barriers** hamper the development of an ecosystem
 - Closed standards
 - Mandatory certification
 - New ecosystem entrants are unable to grow due to preventive measures
Assumptions of Evolutionary Economics

- Historical events
 - Can lead to **inferior** and **sub optimal outcomes**
 - Firms are largely **unable to predict the impact** strategic and technical decisions will have in the **long run**
 - Historical events are often **self-reinforcing** (e.g. two-sided markets) and **irreversible**
 - Changing a platform or architecture after it turns out an alternative decision would have been superior, is **near impossible**
Innovation in Ecosystems

- Breakthrough innovations do not succeed in isolation without **complementary innovations to attract users**
 - In other words: technologies compete for users
- Technological evolution can be seen as a **chain of experiments** with new technology (variation)
 - Some technologies will successfully diffuse in an ecosystem
 - Others will fail and disappear (selection)
- This process is termed **technological substitution**
 - Incumbent technologies get replaced by new technologies
 - Shifts in market shares and stock valuations will occur
 - Triggering structural change in an ecosystem
Defining Innovation in Ecosystems

- Innovation is the primary source of variation
 - Firms with effective and flexible routines will **outperform** their peers with ineffective and inflexible routines

- Distinction between two types of innovation
 - **Product innovation**: successful development and introduction of a new hardware or software product, technology or service
 - Samsung Galaxy lineup, Windows OS, technological standards
 - **Process innovation**: successful application of a new and more efficient production process
 - Agile, Lean

- Firms compete on **product quality** through product innovations, and compete on **minimizing costs** through process innovations
Defining Innovation in Ecosystems

- Second distinction between types of innovation
 - **Radical innovation**: establishment of a new dominant design that is embodied in a new software product, technology or service
 - Comes with a **new set of core design concepts and principles** (i.e. a dominant design) upon which **complementary** products, technologies or services can be built
 - New delivery models (SaaS / cloud), introduction of Apple’s iPhone in 2007
 - **Incremental innovation**: refinement and extension of an established dominant design in a software product, technology or service
 - Niche creators that refine, diversify and extend a dominant platform
 - Can lead to a technological trajectory and technological paradigm
 - **Dominant design**: de facto technology standard in an ecosystem
Diffusion and Structural Change

- Radical innovations diffuse among users through adoption.
- Diffusion processes tend to follow a similar pattern (S-curve), also called the adoption curve.
- Three phases can be distinguished:
 - Introduction
 - Expansion
 - Maturity
Introduction Phase

- Dominant designs of incumbent firms mature and have been perfected through incremental innovations.

- **Windows of opportunity** therefore open to new and agile firms with flexible routines.

- Radical innovations will have to prove themselves among competing innovations introduced by rivals.
 - Early adopters and venture capitalists are crucial to generate e.g. an initial user base and to fuel marketing and manufacturing processes.
Introduction Phase

- Deciding factors (self-organizing effects) at play
 - (1) Increasing returns
 - An increasing number of customers serves as bait for niche creators
 - An increasing number of niche creators extending and refining the innovation attracts more users, while concurrently solidifying the position of the radical innovator (*increasing returns to adoption*)
 - (2) Technological lock-ins
 - Users will become dependent on the innovation and are then unable to use the innovations provided by competitors without facing switching costs
 - (3) Switching costs
 - Users are forced to duplicate their investments
 - Examples are nontransferable app store purchases between Apple’s iOS, Google’s Android and BlackBerry OS.
Introduction Phase

- Deciding factors (self-organizing effects) at play
 - **(4) Critical mass**
 - An increasing and sufficient user base coupled with the refinement and extension of a design leads to the establishment of the new dominant design in an ecosystem.
 - Turning point and decisive moment in the diffusion process.
 - Only one or a couple of variants make their way into the expansion phase.
 - Remaining firms either get evicted from the ecosystem, or lag behind successful competitors.
Expansion Phase

- Self-organizing economic mechanisms remain in effect.
- Firms will increasingly compete through **process innovations**
 - Dominant design has become de facto technology standard.
 - Process innovations allow firms to attain **production efficiency** and **cost reduction**.
- Firms also compete through **product innovations**
 - Introduction of newer versions of their products, services or technologies, to achieve:
 - Differentiation
 - Quality improvements
 - Niche exploitation
Expansion Phase

- Consequences of the new dominant design becomes clear
- Despite refinement and extension by niche creators, may the dominant design turn out to be *sub optimal* compared to earlier designs proposed (by rivaling firms)
 - Bounded rationality
 - Historical (chance) events
 - Economies of scale
 - Path-dependence
 - Irreversibility
Maturity Phase

- As the dominant design matures, the rate of process and product innovations will slowly come to a halt
 - **Technical potential** to further improve a dominant design decreases
 - **Market demand** saturates – innovation diffusion process stops
- A small number of firms with perfected routines survive the selection process and emerge as ecosystem dominators
 - Leading to an **oligopolistic ecosystem structure**
- Windows of opportunity will open again
 - Initiates **self-renewal**
 - Repetition of diffusion process conform adoption curve (s-curve)
 - Incumbent firms will be challenged and new entrants vie for dominance – again altering ecosystem structure
Conclusions

- Introduction of **basic concepts** from evolutionary biology and economics to analyze and comprehend the **structural development** of an ecosystem
 - Variation (innovation) causing diversity in an ecosystem
 - Inheritance (routines)
 - Natural selection (competition) based on routines
- Discussion of **self-organizing properties** in ecosystems
 - Bounded rationality, historical events, economies of scale, path dependence, irreversibility, lock-ins, switching costs, ...
- Different **types of innovation**
 - Product versus process innovations
 - Radical versus incremental innovations
Conclusions

Illustration of applicability of concepts presented by means of an exemplary diffusion process (s-curve)

- **Introduction phase**
 - Innovators battle for their design to become dominant

- **Expansion phase**
 - One or a few dominant designs are subject to increased adoption and incremental improvements, and succeed at the cost of others

- **Maturity phase**
 - Innovation slowly comes to a halt as innovations are perfected
 - Windows of opportunity open for firms to introducing new radical innovations, triggering ecosystem self-renewal
Future Research

- (Longitudinal) qualitative research
 - Validate the **applicability** of evolutionary biology and evolutionary economics concepts presented during each phase in the diffusion process
 - Study **differences** between self-organizing effects in digital ecosystems versus traditional (e.g. manufacturing) ecosystems

- (Longitudinal) quantitative research
 - In-depth studies on the different phases of an innovation diffusion process (s-curve) through e.g. data mining to find domain-specific success patterns
References

