

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

An Evolutionary Economics Approach to Ecosystem Dynamics

Vincent Blijleven – Utrecht University

- Joey van Angeren Utrecht University
 - Slinger Jansen Utrecht University
- Sjaak Brinkkemper Utrecht University

Vincent Blijleven, Joey van Angeren, Slinger Jansen & Sjaak Brinkkemper. An Evolutionary Economics Approach to Ecosystem Dynamics. In Proceedings of the Seventh International Conference on Digital EcoSystems and Technologies.

Outline

- Introduction
- Core definitions of evolutionary biology and economics
- Assumptions of evolutionary biology and economics
- Innovation in ecosystems
- Diffusion and structural change
- Conclusions
- Future research

Ecosystems

 Frameworks to see the interconnected and multi-granular reality of a set of entities, to order and comprehend their complexity

Business ecosystems

"An economic community supported by a foundation of interacting organizations and individuals." (Moore, 1993)

Software ecosystems

"A set of businesses functioning as a unit and interacting with a shared market for software and services, together with the relationships among them." (Jansen, Brinkkemper & Finkelstein, 2009)

Digital ecosystems

"A digital ecosystem is a newly networked architecture and collaborative environment that addresses the weakness of clientserver, peer-to-peer, grid, and web services." (Boley & Chang, 2007)

Ecosystems

- Problems experienced:
 - Several key definitions have not yet been fully explored
 - Lack of an economics perspective on ecosystem evolution
- Evolutionary economics perspective to:
 - Gain insight in how to apply an economics perspective to study the self-organizing properties of ecosystems
 - Determine the **position** of a firm in an ecosystem
 - Understand how an ecosystem **develops** over time (e.g. how technological choices and chance events shape the future structure of an ecosystem)
 - Trade-offs can then be considered and balanced to positively impact firm performance as well as the overall ecosystem in which the firm operates

Universiteit Utrecht

Core Definitions in Evolutionary Biology

Inheritance

- Genetic material **passed on** to offspring from parents by means of reproduction
- Variation
 - Diversity among a species as a result of genetic mutations

Selection

 Survival or death of individuals based on superior or inferior physical traits

Core Definitions in Evolutionary Economics

Routines

- Proven formal and informal procedures organizations rely on during decision making (competences)
 - Firms pass on routines to new employees through teaching and imitation

Innovation

- Carried out when routines are threatened by competitors.
 - Required to prevent organizations from becoming inert, inflexible, or go bankrupt
 - Leads to ecosystem diversification

Competition

- Organizations with superior routines/competences survive, others disappear from the ecosystem
 - Market shares, stock valuations, …

Translated Counterparts

Assumptions of Evolutionary Economics

- Bounded rationality
 - Actors have different and imperfect capabilities to process and interpret information
 - Information is **not ubiquitously available**
 - Actors therefore display conservative and risk-avoiding behavior by relying on routines built up over time
 - Failing to review routines can lead to path dependent behavior (Nokia's tunnel vision – tied to existing customers and products)
- Economies of scale
 - Entry barriers hamper the development of an ecosystem
 - Closed standards
 - Mandatory certification
 - New ecosystem entrants are unable to grow due to preventive measures

Assumptions of Evolutionary Economics

- Historical events
 - Can lead to inferior and sub optimal outcomes
 - Firms are largely unable to predict the impact strategic and technical decisions will have in the long run
 - Historical events are often self-reinforcing (e.g. two-sided markets) and irreversible
 - Changing a platform or architecture after it turns out an alternative decision would have been superior, is near impossible

Innovation in Ecosystems

- Breakthrough innovations do not succeed in isolation without complementary innovations to attract users
 - In other words: technologies compete for users
- Technological evolution can be seen as a chain of experiments with new technology (variation)
 - Some technologies will successfully diffuse in an ecosystem
 - Others will fail and disappear (selection)
- This process is termed technological substitution
 - Incumbent technologies get replaced by new technologies
 - Shifts in market shares and stock valuations will occur
 - Triggering structural change in an ecosystem

Defining Innovation in Ecosystems

- Innovation is the primary source of variation
 - Firms with effective and flexible routines will **outperform** their peers with ineffective and inflexible routines
- Distinction between two types of innovation
 - Product innovation: successful development and introduction of a new hardware or software product, technology or service
 - Samsung Galaxy lineup, Windows OS, technological standards
 - Process innovation: successful application of a new and more efficient production process
 - Agile, Lean
- Firms compete on product quality through product innovations, and compete on minimizing costs through process innovations

Universiteit Utrecht

Defining Innovation in Ecosystems

- Second distinction between types of innovation
 - Radical innovation: establishment of a new dominant design that is embodied in a new software product, technology or service
 - Comes with a new set of core design concepts and principles (i.e. a dominant design) upon which complementary products, technologies or services can be built
 - New delivery models (SaaS / cloud), introduction of Apple's iPhone in 2007
 - Incremental innovation: refinement and extension of an established dominant design in a software product, technology or service
 - Niche creators that refine, diversify and extend a dominant platform
 - Can lead to a technological trajectory and technological paradigm
 - Dominant design: de facto technology standard in an ecosystem

Diffusion and Structural Change

- Radical innovations diffuse among users through adoption
- Diffusion processes tend to follow a similar pattern (Scurve), also called the adoption curve
- Three phases can be distinguished:
 - Introduction
 - Expansion
 - Maturity

Universiteit Utrecht

Introduction Phase

- Dominant designs of incumbent firms mature and have been perfected through incremental innovations
- Windows of opportunity therefore open to new and agile firms with flexible routines
- Radical innovations will have to prove themselves among competing innovations introduced by rivals
 - Early adopters and venture capitalists are crucial to generate e.g. an initial user base and to fuel marketing and manufacturing processes

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

Introduction Phase

Deciding factors (self-organizing effects) at play

(1) Increasing returns

- An increasing number of customers serves as bait for niche creators
- An increasing number of niche creators extending and refining the innovation attracts more users, while concurrently solidifying the position of the radical innovator (*increasing returns to adoption*)

(2) Technological lock-ins

Users will become dependent on the innovation and are then unable to use the innovations provided by competitors without facing switching costs

(3) Switching costs

- Users are forced to duplicate their investments
- Examples are nontransferable app store purchases between Apple's iOS, Google's Android and BlackBerry OS.

Introduction Phase

- Deciding factors (self-organizing effects) at play
 - (4) Critical mass
 - An increasing and sufficient user base coupled with the refinement and extension of a design leads to the establishment of the new dominant design in an ecosystem
 - Turning point and decisive moment in the diffusion process
 - Only one or a couple of variants make their way into the expansion phase.
 - Remaining firms either get evicted from the ecosystem, or lag behind successful competitors

Expansion Phase

- Self-organizing economic mechanisms remain in effect
- Firms will increasingly compete through process innovations
 - Dominant design has become de facto technology standard
 - Process innovations allow firms to attain production efficiency and cost reduction
- Firms also compete through product innovations
 - Introduction of newer versions of their products, services or technologies, to achieve:
 - Differentiation
 - Quality improvements
 - Niche exploitation

Expansion Phase

- Consequences of the new dominant design becomes clear
- Despite refinement and extension by niche creators, may the dominant design turn out to be **sub optimal** compared to earlier designs proposed (by rivaling firms)
 - Bounded rationality
 - Historical (chance) events
 - Economies of scale
 - Path-dependence
 - Irreversibility

Universiteit Utrecht

Maturity Phase

- As the dominant design matures, the rate of process and product innovations will slowly come to a halt
 - Technical potential to further improve a dominant design decreases
 - Market demand saturates innovation diffusion process stops
- A small number of firms with perfected routines survive the selection process and emerge as ecosystem dominators
 - Leading to an oligopolistic ecosystem structure
- Windows of opportunity will open again
 - Initiates self-renewal
 - Repetition of diffusion process conform adoption curve (s-curve)
 - Incumbent firms will be challenged and new entrants vie for dominance – again altering ecosystem structure

Conclusions

- Introduction of basic concepts from evolutionary biology and economics to analyze and comprehend the structural development of an ecosystem
 - Variation (innovation) causing diversity in an ecosystem
 - Inheritance (routines)
 - Natural selection (competition) based on routines
- Discussion of self-organizing properties in ecosystems
 - Bounded rationality, historical events, economies of scale, path dependence, irreversibility, lock-ins, switching costs, ...
- Different types of innovation
 - Product versus process innovations
 - Radical versus incremental innovations

Conclusions

- Illustration of applicability of concepts presented by means of an exemplary diffusion process (s-curve)
 - Introduction phase
 - Innovators battle for their design to become dominant

Expansion phase

One or a few dominant designs are subject to increased adoption and incremental improvements, and succeed at the cost of others

Maturity phase

- Innovation slowly comes to a halt as innovations are perfected
- Windows of opportunity open for firms to introducing new radical innovations, triggering ecosystem self-renewal

Universiteit Utrecht

Future Research

- (Longitudinal) qualitative research
 - Validate the **applicability** of evolutionary biology and evolutionary economics concepts presented during each phase in the diffusion process
 - Study differences between self-organizing effects in digital ecosystems versus traditional (e.g. manufacturing) ecosystems
- (Longitudinal) quantitative research
 - In-depth studies on the different phases of an innovation diffusion process (s-curve) through e.g. data mining to find domain-specific success patterns

References

Boley, H., & Chang, E. (2007). Digital Ecosystems: Principles and Semantics.
Jansen, S., Brinkkemper, S., & Finkelstein, A. (2009). Business Network Management as a Survival Strategy: A Tale of Two Software Ecosystems. *In Proceedings of the First Workshop on Software Ecosystems* (pp. 34-48).
Moore, J.F. (1993). Predators and Prey: A New Ecology of Competition. *Harvard Business Review 71*(3), 75-86

