Relationship Intimacy in Software Ecosystems: A Survey
of the Dutch Software Industry

Joey van Angeren

Vincent Blijleven

Slinger Jansen

Department of Information and Department of Information and Department of Information and

Computing Sciences,
Utrecht University

j.vanangeren@cs.uu.nl

ABSTRACT

Software vendors depend on suppliers to provide the under-
lying technology for domain specific solutions. As a con-
sequence, software vendors cooperate with suppliers to de-
liver a product. This cooperation results in supplier de-
pendence, but also leads to opportunities. We present the
results of an exploratory research based on twenty-seven
case studies, identifying supplier strategies and resulting
trade-offs. Strategies range from fully depending on large
software ecosystem orchestrators to a minimal dependency
strategy. Furthermore, we identify factors at play when se-
lecting suppliers for different components. These factors in-
clude; ecosystem health indicators, product and license type
and intensive support and maintenance flows. The results
presented in this paper can be used by software vendors to
assess their software supply network to review supplier rela-
tionships, but also for future research.

Categories and Subject Descriptors

1.6.5 [Simulation and Modeling]: Model Development;
K.1 [The Computer Industry]

General Terms
Theory, Design, Management

Keywords

software ecosystem, supplier relationship, supplier selection,
software supply network, product deployment context

1. INTRODUCTION

The Dutch product software industry is flourishing and
is playing an important role in the Dutch economy. Var-
ious examples of successful products are computer games,
navigation systems, administrative software and enterprise
resource planning products. For the purpose of this paper,
product software is defined as; “a packaged configuration of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MEDES’11 November 21-24, 2011, San Francisco, USA

Copyright 2011 ACM 978-1-4503-1047-5/10/10 ...$10.00.

Computing Sciences,
Utrecht University

vbblijle@cs.uu.nl

Computing Sciences,
Utrecht University

s.jansen@cs.uu.nl

software components or a software-based service, with aux-
iliary materials, which is released for and traded in a specific
market” [16].

As noted from the definition, software products are a con-
figuration of numerous components. Often, a software ven-
dor will not develop all of these components in-house, rather
there will be a number of other organizations that supply
them with hardware and software components, services and
intellectual property vital for the products they offer. Be-
cause of this, software vendors become dependent on service
providers and other software vendors in order to leverage
their products to the customer. We refer to the network of
actors that is the result of this phenomenon as a software
ecosystem. A software ecosystem is defined as; “a set of
actors functioning as a unit and interacting with a shared
market for software and services, together with the relation-
ships among them” [10].

Software ecosystems can be studied from different scope
levels. These different scopes involve different levels of ab-
straction and view software ecosystems and their interac-
tions from different perspectives [8]. In the most detailed
scope level, one specific software ecosystem is studied in-
cluding the actors that are part of this ecosystem as well as
the relationships amongst these actors. On the total oppo-
site, a scope level addresses the organizational perspective
and the relationships between different organizations and
ecosystems. In this paper, we will use the middle scope
level, in the form of Software Supply Networks, or in short
SSNs. Within this scope level the network of hardware,
software and service organizations is studied that cooper-
ate to satisfy market demands [6]. This SSN can be used
to provide insight into first-tier buyer-supplier relationships
for one specific software vendor of interest, including the re-
sulting flows and dependencies. Also, creating a Product
Deployment Context (PDC) for this software vendor can
provide further insights. A PDC describes the structure of
software products and its direct running environment in a
stack view, providing insight into how the product is com-
posed out of different components [1] Combining these in-
sights into how important a certain component is perceived
to be for the portfolio of a certain product, including the
grade of dependency on a certain supplier can be used to
identify weaknesses. This can be useful to gain insight into
the factors that are at play when selecting a supplier. Fur-
thermore, this is valuable information to be aware of for
a software vendor, to make the right decisions on a both
strategic business as well as a software architectural level.

Because of the potential impact supplier dependencies and

FERETEe T i
| Netwark |
| |
R —.

Products Finance Content

P.1 Access o product €.1 Fee for P.A C.1 Input
P.2 MET Framework €2 Yearly fea for 5.1 data
P.2 Programming Language C# €.3 Fee for H.1

P.4 Radix Framework €.4 Fae for P.4 :51“’5‘:;’;
P 5 MS Database €5 Fee for P.5 Harwars

P.6 M5 Windows Servar 05 €.6 Fee for P.6

P.T M5 Windows Client OS5 €.7 Fee for P.T Services
P.B Software product protection €8 Fee for P8 5.2 Support
P2 WinGrid {Intarfaca) €.9 Foe for P.A for product

NET Framewark MS Windows Client 05
| P35 I _I
& Client PC
[}
IR | i
Radix Framework | | Microsoft BT =
i 3
1
| ' | Radix G
M5 Databaze i L Py
] e s
— [xHED L253
1
BAS Windows. Server 05 .
! |Infragistics]
e]

Company X

H1
=)

Figure 1: An example of a Product Deployment Context and Software Supply Network for a software vendor

in the dataset

resulting trade-offs can have, more research needs to be car-
ried out within this domain. In this paper we address sup-
plier relationships from a portfolio perspective. We will pro-
pose a matrix to classify components and services and their
perceived grade of importance for the final delivered prod-
uct. This matrix will be utilized to perform a pattern anal-
ysis on the SSNs, PDCs and tables that describe the grade
of intimacy of relationships with suppliers of Dutch product
software companies. These data have been gathered through
twenty-seven case studies. We will examine different sup-
plier relationships, strategies and dependencies, based on
the importance of the delivered component or service for
the product leveraged by the Dutch software vendor. Fur-
thermore, we will address the choices for supplier strategies
from a software ecosystems perspective by addressing rea-
sons to join an ecosystem as a customer to obtain software
components or services, or even as a partner. Choosing for
a certain supplier might result in a high level of dependence
or lock-ins, having large implications for, for example, the
business model of a company. Also, changing strategies or
decisions about components or services by one of the suppli-
ers can cause big implications and problems for the software
vendor. On the contrary, intimate relationships with sup-
pliers can result in advantages, such as shortened support
and maintenance lines or secondary benefits. As a result, a
software product company gets confronted with trade-offs.

The remainder of this paper continues with a descrip-
tion of the research approach in section two, in which we
will elaborate on the research methods we employed as well
as the case study participants selection process. In section
three, we will present a matrix to classify components of a
software product or its direct running environment. In the
fourth section, we present the results of the case study con-
cerning organizational size, business models and software
ecosystems. An analysis and interpretation of the results
presented in section four will be discussed in section five,
including several benchmarks with similar studies that have
been conducted in the past. In section six, we discuss en-
countered validity threats and make statements about gen-
eralization possibilities of the presented results. In the last
section we draw the most important conclusions and provide
suggestions for future research.

2. RESEARCH METHOD

In this paper we use empirical data gathered from the
Dutch product software industry. We chose for a multiple
case study design [17]. The data were gathered between
September and November 2010. The total dataset consists
of a total of twenty-seven case studies.

2.1 Data Collection

The data collecting process took place during the Product
Software course at Utrecht University, which is part of the
bachelor in Information Science curriculum. Twenty-seven
couples of bachelor students selected a small to medium-
sized Dutch product software company, where they wanted
to conduct their research in order to get familiar with the
Dutch product software industry. The main prerequisite for
a software vendor to qualify for participation in these case
studies was that their number of employees had to be at
least ten. Furthermore, they had to be registered at the
Dutch Chamber of Commerce. During two or three meet-
ings, the teams of students gathered information about three
key themes; organizational structure, business models and
software ecosystems. Each assignment addressed one key
theme, and each assignment was graded separately. The as-
signments did mainly consist of open question, this provides
for a broader insight into drivers and motivations software
vendors have for strategic decisions. All couples conducting
the research used a similar approach when conducting the
case studies.

The first part of the data collecting process was edged
on gathering information about the participating software
vendors. Information was gathered about the products they
offer and the way in which the company is organized. This
structure has been captured in an organizational structure,
including details on the number of employees. The middle
part of the case study was edged on business and revenue
models. Data was captured by filling the business model
canvas as defined by Osterwalder [12]. In this business model
canvas, many components of the business model are ad-
dressed, for example, key partners, activities and revenue
models. Furthermore, accompanied by a representative of
the company, they filled in a SWOT Matrix [15] to identify
the main strengths, weaknesses, opportunities and threats
for the respective company.

Software ecosystems were addressed in the last part. For
each of the companies, one product of interest, that the soft-
ware vendor develops and delivers has been selected. For this
product, the Software Supply Network and Product Deploy-
ment Context has been described and captured, according
to the modeling techniques described by Boucharas, Jansen
& Brinkkemper [1] and those described by Brinkkemper,
Jansen & Van Soest [2]. An example from the dataset is
shown in figure 1. The PDC describes a client-server prod-
uct delivered by one of the product software companies that
took part in this case study. The labels in the SSN, depicted
at the right side of the figure match with those included in
the PDC. The SSN also includes other suppliers of com-
ponents, services and content. This way, the SSN gives an
overview of first-tier buyer-supplier relationships and the ex-
change of products, services, data and money flows between
these actors. Furthermore, in this part the perceived level
of intimacy for each of the actors within the SSN has been
collected in a table.

2.2 Selection Criteria

Because of the nature of the data collection process and
to enhance the quality and integrity of the dataset, we for-
mulated a number of inclusion criteria for each of the con-
tributions. The contributions that were to be included into
the dataset we used had to apply to the following criteria:
(1) All three assignments have to be handed in and need
to be accessible; (2) The average grade for the entire con-
tribution has to be at least 7,5 on a scale of 1-10 where 1
is the lowest possible grade and 10 is the highest possible
grade; (3) The grade for each assignment has to be at least
7 or higher; (4) Each assignment has to be entirely executed
and complete; (5) Each company can be included only once
into the dataset, and in case of a duplicate the one with the
highest average grade will be included.

After applying the inclusion criteria to the initial dataset,
in total seventeen out of twenty-seven contributions were
included into the final dataset, 63% of the initial dataset.
This dataset will be subject to the analyses that form the
basis of the findings presented in this paper.

2.3 Data Analysis

The main research question of this paper is as follows;
“How does the perceived level of importance of a component,
that is part of a software product, influence supplier selec-
tion”? To be able to answer this research question and to
benchmark with previous findings, we perform both quali-
tative and quantitative analyses on the empirical data gath-
ered from the Dutch product software industry. Further-
more, notions from existing literature and about the Prod-
uct Deployment Context will lead to the creation of a matrix
that classifies product components.

A brief quantitative analysis is performed and employed
to contextualize the dataset. We therefore elaborate on var-
ious organizational characteristics, such as organizational
size and delivery models. Using these findings as a prerequi-
site, a qualitative analysis is performed to provide an answer
to the research question. The SSN and PDC, together with
the table that describes the perceived level of intimacy with
each of the actors within these networks, will be subject to
a pattern analysis. Through this analysis, we identify mul-
tiple supplier strategies and their resulting trade-offs. The
matrix that will be presented in section 3 is then utilized

[
I
&
EY
Critical Critical
Core Components Context Components
=
9
]
S
Non-Critical Non-Critical
Core Components Context Components
Low

Contextuality High

Figure 2: A matrix for the classification of compo-
nents within a product deployment context

for further analysis. The analysis is employed to identify
factors that influence supplier selection and to determine to
what extent these factors are perceived as important when
selecting certain types of components.

3. RELATED LITERATURE

Companies need to monitor their relationships with sup-
pliers and be aware of the influence these suppliers can ex-
ert over them. Maloni & Benton [11] emphasize the need
for power awareness within supply chains in order to con-
struct integrated, high performance buyer-supplier relation-
ships. When looking at these buyer-supplier relationships,
Software Supply Networks differ from traditional supply net-
works because traditional supply networks, and associated
supply chain management, lack attention for maintenance
flows between different actors [9], This flow is important
within the product software industry. Therefore, in this pa-
per Software Supply Networks are subject of study.

Within the research domain of software ecosystems, Jansen,
Finkelstein & Brinkkemper [10] summarized an array of re-
search challenges. One of these challenges is to direct more
attention to Software Supply Networks. However, until now
little research has been directed at supplier relationships
within these software supply networks. Popp & Meyer [13]
identifies different categories of suppliers, based on the type
of software or services they deliver and the exchange of
goods, intellectual property and money that takes place be-
tween buyers and suppliers. Examples of these roles are
an OEM or open source supplier. Jansen, Brinkkemper &
Finkelstein [7] already noted that the intimacy of these sup-
plier relationships is related to the role a certain component
fulfills within a product context. However, they did not clas-
sify these components to address relationship intimacy for
different component type suppliers.

4. A MATRIX FOR THE CLASSIFICATION
OF COMPONENTS WITHIN A PRODUCT
DEPLOYMENT CONTEXT

Product software is constructed out of multiple compo-
nents. Most relevant components are either hardware or
software components. Apart from that, additional services
and the inclusion of added value by the software vendor will

W5mall (10-25

MLarge (100or

(n=4)

employees) (n=7)

Medium (26-100
employees) (n=a)

more employees

M On-premises
n=7)
Saas (n=3)

M Paas (n=2)

M Hybrid (n=5)

Figure 3: Contextualization of the dataset in terms of company size and delivery models

result in a final software product. As already elaborated on
by Jansen, Brinkkemper and Finkelstein [7], some compo-
nents obtained from suppliers are more easily replaced than
others. An interface grid, for example, can be replaced eas-
ily within most software products for a product with similar
functionality from another supplier without heavily affecting
the end product. Totally migrating a software product to
be compatible with another operating system on the other
hand, is a challenging and time consuming process. Based
on this notion, we developed a matrix that classifies compo-
nents that are at play within the running environment of a
software product, as described in PDCs.

The matrix in figure 2 distinguishes four types of compo-
nents from an architectural perspective, that are part of the
software product or its direct running environment. First,
we distinguish between core and context components. When
speaking of core components, we refer to the fundamental
building blocks of a software product that are vital to allow
the software product to be run and provide no value-added
functionalities to the customer. Core software components
are regarded as the heart of a software product. Context
software components then, are software components that
add specific values to the product. For example, certain
functionalities that make the product unique to a customer
or that add additional functionality to the product. Un-
like core software components, context components are not
a necessity for the software product to be run.

When examining core and context components, we can
make a distinction between critical and non-critical core
and context components. Components are critical if they
cannot be easily interchanged with another component and
contribute significantly to the added value of the software
product and its resulting overall functionality. A simple
PDF plug-in, for example, provides an additional function-
ality for the product and is therefore a context component,
but since it is easily interchangeable by a substitute with
equal functionality from a different supplier it is considered
as non-critical.

The proposed matrix complies with the PDC modeling
approach defined by Boucharas, Jansen & Brinkkemper [1].
Within the stack view of a product and its direct running en-
vironment, a distinction can be made between optional and
required components. Typical examples of optional com-
ponents again are plug-ins or components that are easily
interchangeable with another component. Furthermore, the
place a product has within the stack view depicted in a PDC,
typically products that are lower on a stack are core com-
ponents (e.g. operating systems, frameworks, databases),
as well as the description that always accompanies a PDC

provide for a last distinction within the four identified cate-
gories.

Because the PDC provides insight into product compo-
nents and the running environment in a stack view that is
based on a certain level of abstraction, this matrix is created
from a simplified architectural perspective. Since factors like
the degree of coupling and the lines of code necessary to in-
corporate a certain component into the final product cannot
be measured by assessing the PDC, they are not considered
as factors influencing the classification of components. Since
we are dealing with PDCs within our dataset, this simplifi-
cation step will not have an influence on the results.

S. RESULTS

To conceptualize the dataset, we divided the participants
in three distinct company size categories. Companies hav-
ing ten up to and including twenty-five employees are cate-
gorized as small. In addition, companies with an employee
amount of twenty-six up to and including one hundred have
been categorized as medium-sized companies. The last cat-
egory is for companies categorized as large, who have more
than one hundred employees. This categorization of partic-
ipants based on company size differs from the one proposed
by the Dutch Chamber of Commerce, because that cate-
gorization does not provide enough detail for this research.
An overview of the result of this company categorization is
displayed in figure 3.

Furthermore, the software delivery model for each com-
pany within the dataset is relevant. 55% of the companies
sell their software products as traditional (on-premises) soft-
ware, where the product is both installed and running on
computers of the person or organization using the software.
In addition, 41% of these companies also offer a software
as a service (SaaS) solution as an alternative next to their
traditional solution, we refer to this as a hybrid delivery
model. Additional revenue streams for on-premises software
will often come from subscriptions to maintenance and sup-
port. Furthermore, three participating companies are ded-
icated SaaS solution providers. The remaining two compa-
nies solely offer a platform as a service (PaaS) solution. An
overview of solution types offered in terms of percentage can
be seen in figure 3.

The core of the dataset is formulated around Software
Supply Networks, Product Deployment Contexts and a ta-
ble that describes the perceived level of intimacy with each
supplier that is part of an SSN. Furthermore, a textual de-
scription accompanies these artifacts to provide insight into
the motivation for the decisions made by the product soft-
ware company. Out of this data, we distinguish four main

supplier strategies.

e Product integration with a hardware component sup-
plier

e Depending on a large software ecosystem orchestrator
e The inclusion of open source components
e Minimal supplier dependence strategy

Software vendors are confronted with trade-offs when de-
cisions are made to opt for one or more of these strategies.
Choosing to be less dependent, for example, can result in
having to dedicate more resources to development or hav-
ing fewer benefits. An overview of the strategies and its
resulting trade-offs are collected in table 1.

Several companies choose to integrate their products with
a hardware component supplier. For example, a large com-
pany indicated that due to the complex implementation pro-
cess of its product, the choice was made for a firm integration
with a single hardware component supplier. This to stream-
line the implementation process and thereby reducing com-
plexity. Companies need to make a trade-off between having
a streamlined integration process by working with a hard-
ware supplier with whom they have built up an intimate re-
lationship and thus becoming dependent on this vendor, or
having a less streamlined product integration process with-
out being dependent on the hardware supplier, since in a lot
of cases it is easily replaceable by another one.

Some companies choose to become fully dependent on
large software ecosystem orchestrators. In a lot of cases this
is regarded as an opportunity rather than a threat. Various
reasons for this choice have been given, such as; “continua-
tion of the product and support is more or less guaranteed,
since we anticipate the company will still exist in ten years
from now” or “the company offers attractive benefits to its
customers”. One of the main reasons companies choose to
rely on large software ecosystem orchestrators, is to benefit
from niche creation within the ecosystem. In case of heavily
depending on a large software ecosystem as a supplier, it
becomes common to join its partnership model. This model
brings additional benefits for both parties, can provide ed-
ucation for employees of the participant and can shorten
direct support and maintenance lines to the supplier. An-
other trade-off needs to be made here, whether to rely on a
large software ecosystem orchestrator and benefit from this
relationship, or to remain as independent as possible.

Software vendors indicate to be reviewing their current
supplier relationships because of the advent of open source
software components as alternatives for proprietary compo-
nents. Various reasons for this were given, such as; “we
advocate the inclusion of open source software components
as we do not want to be subjected to vendor lock-ins”, “we
contribute to open source software ourselves, to influence
the way the open source project is heading”. With the bene-
fits from open source also come new supplier selection chal-
lenges, such as carefully examining licenses of open source
software to avoid liability issues. One company stated; “we
do not want to include open source components in our prod-
uct, as this makes us prone to liability issues for which we
do not want to be held accountable”. Having to leverage
continuous support and maintenance to customers is per-
ceived as an additional drawback of open source. A software
vendor indicated; “we associate the inclusion of open source

components with increased responsibility in terms of main-
tenance and support. This responsibility now ends up at our
company”. Most open source communities just deliver their
products rather than providing additional services. As a
consequence, more responsibilities end up with the software
vendor.

The larger companies within the dataset strive for less
supplier dependence. Critical components for the leveraged
product are developed in-house if resources are available,
as one large company indicated; “we try to develop as many
components in-house as we can, to reduce the dependency on
component suppliers”. A trade-off is made between the ad-
vantage of not needing any additional resources because of
being dependent on a supplier, or developing components
in-house and thus decreasing direct supplier dependency.
This in the contrary to smaller companies that rely on basic
vital components from suppliers. They create some addi-
tional value on top of this, in an attempt to serve a niche.
Apart from the mentioned suppliers, some software vendors
are dealing with service providers and intellectual property
providers. An example of this is that most SaaS vendors in-
dicate to maintain intimate relationships with their hosting
providers. They cannot permit themselves to have downtime
or security breaches, so short support and maintenance lines
are needed.

6. ANALYSIS

In the results we distinguished four types of supplier strate-
gies and their trade-offs, but did not yet discuss the factors
that are at play when selecting strategies for certain compo-
nents. The component classification matrix serves as a basis
for the analysis of the results. The goal of this analysis is to
capture the influence of the type of a software component,
as defined in the matrix, on supplier selection criteria and
supplier relationships.

With regard to the perceived level of intimacy, a rela-
tionship with a component supplier can be classified as either
intimate, familiar or unfamiliar. In this sense an intimate
relationship can be, for example a partnership with a sup-
plier, but also just having regular and direct contact with the
supplier. On the contrary, an unfamiliar relationship with
a supplier is applicable for normal buyer-supplier relation-
ships in which the software vendor just obtains a product
or service. As noted in section 4, software vendors indi-
cate to select suppliers based on their capability to supply
their components without disruptions, their company size
or reputation. Furthermore, they strive for participation
in partnership models of large software ecosystems. They
are keen on intimate relationships with these organizations,
especially when it concerns a critical core component or a
critical context component supplier. An example of this is
the relationship with a platform host that forms the basis of
the end product.

Indicated motives for supplier selection, for example, when
choosing to depend on a large software ecosystem show par-
allels with ecosystem health indicators. Ecosystem health
is defined by Iansiti & Levien [4, 5] as an overall perfor-
mance indicator of an ecosystem. This is further defined
by three determinants; robustness, productivity and niche
creation. For supplier selection, especially robustness is
relevant, since it indicates the capability of an ecosystem
to face and survive disruptions. Software vendors indicate
that for them, continuity of a software ecosystem and

Table 1: Supplier selection strategies and their resulting trade-offs

Strategy

Trade-off

Product integration with a hardware | Y

component supplier supplier”

(4) Streamlined integration process by working with an “intimate hardware

(-) Become dependent on a supplier

N | (+) Independent of hardware supplier
(-) Less streamlined integration process

Depending on large software ecosys- | Y
tem orchestrator

(+) Benefit from the participation in a partnership model of a large software
ecosystem orchestrator

(4) Benefit from niche creation

(+) Direct contact & support lines with the supplier

(-) Become dependent on a large software ecosystem orchestrator

N | (4+) Remain independent

(-) No benefits from niche creation

(-) Less partnership model possibilities

(-) Indirect contact & support lines with the supplier

Inclusion of open source components | Y

(4+) Ability to steer an open source software project into a desired direction
(+) Less license fees

(-) Possible liability issues

(-) More support and maintenance responsibilities

N | (+) Avoid liability issues
(4) Less support and maintenance responsibilities
(-) Few strategic influence on the development of components

Minimal dependency on suppliers Y

(4+) Develop components in-house to decrease direct supplier dependencies
(-) More resources required

(+) No additional resources required
(-) Remain dependent on suppliers

its products is vital when selecting a supplier for the most
valuable components of a product. Software vendors there-
fore opt for stability, by selecting software ecosystems to
join, as a customer or partner, based on these simple indica-
tors. Related to this, are some of the indicators to measure
ecosystem health, as defined in [3]. The visibility of a
software ecosystem within the market is indicated as
another important reason to choose for a certain supplier, es-
pecially for large ecosystems that provide core components.
This is also reflected by quotes of software vendors such as;
“the supplier has a strong market position”. Furthermore,
niche creation is an important reason to join a software
ecosystem. This is especially the case when selecting a plat-
form that forms the basis for the product. A medium sized
software vendor, for example, chooses to fully depend on
Microsoft or SAP, providing additional functionality on top
of one of their products or platforms to serve a niche within
the ecosystem.

Choosing for different product types, in the form of
open source components, becomes more interesting for soft-
ware vendors. Examining open source licenses therefore,
becomes prominent in the supplier selection process. This
examination is performed regardless of the type of compo-
nent, since inclusion of any component with a restricting
open source license, can have serious consequences for the
rights of use or redistribution for the total software product.
Ruffin & Ebert [14] discuss several major legal aspects and
three major risks with regard to the inclusion of open source
software and how to mitigate them during product devel-
opment. The first risk concerns directly integrating open
source software into the source code, and then reproducing
or selling the product without permission of the licensor. As
a consequence, the licensor might claim damages or force the

product vendor to terminate production, delivery and sale.
Secondly, open source software is often a compilation of code
from many sources. Because of these many sources, it is not
an easy task to identify which parts, if at all, relate to pro-
tected intellectual property rights. Infringement of patents
of third parties or other intellectual property rights might be
the consequence of being unaware of including open source
software that is protected by rights. Third, when an open
source tool is used to, for instance, generate output that con-
tains tool-created comments and a specific structure, the re-
sulting work might be considered a derivative work. In this
case, the owner of the tool and thus the copyright holder
will be given certain rights to the resulting product. In all
three discussed risks, an examination by an expert (e.g. ju-
dicial expert) often becomes emergent. As a consequence
of these risks, software vendors indicate to be holding back
when choosing for the inclusion of open source components.

Several participants primarily belonging to the large com-
pany size category mentioned that for certain components
they prefer open source over closed source. The reason they
gave was that using open source components leads to less
supplier dependence which makes it an attractive alterna-
tive. They did not, however, mention anything about possi-
ble copyright violations due to the inclusion of open source
software protected by intellectual property rights, making
them vulnerable for the associated major risks as described
in the beginning of this section. It is questionable whether
the participants are aware of the major risks concerning the
inclusion of open source software within their own commer-
cial products. While this aspect is critical for all compo-
nents, only a few software vendors indicate to employ strict
policies about which open source licensed components can
be included into a product.

Table 2: Classification of factors influencing supplier relationships and selection per product component type

Category Factor Critical Non crit- | Critical Non criti-
core com- | ical core | context cal context
ponent component | component | component

Supplier related factors | Perceived level of intimacy | Intimate Familiar Intimate Unfamiliar

Continuity Y Y Y N
Visibility within the market | Y Y N N
Niche creation Y N N N
Product related factors | Product & license type Y Y Y Y
Support & maintenance Y N Y N

Support and maintenance flows play a decisive role
when selecting both critical core and context component
suppliers. For critical components a well organized support
and maintenance flow is essential. Therefore, continuity of
maintenance and support and direct lines with suppliers are
identified as important triggers for supplier selection. These
maintenance and support interactions make supply manage-
ment in the (product) software industry different from this
practice in other industries [7]. As a result, partnering with
these suppliers becomes interesting to shorten these lines,
definitely when these support and maintenance flows are
part of the additional services that a software vendor offers
to create additional revenue streams.

Table 2 is the result of classifying the factors described
in this section. By taking the selection criteria as described
into account, we created a classification table to identify
which factors are important when selecting a supplier for a
certain type of component and what the average grade of
intimacy is for this supplier relationship. It is important
to note, that selection criteria related to functionalities or
perceived added values of a certain component and costs are
not included in this table, since they will be applicable for
all categories and are therefore trivial.

7. DISCUSSION

In this paper, we addressed supplier selection from a soft-
ware ecosystems and portfolio perspective. We also ad-
dressed component classification, supplier strategies and the
way in which the perceived level of importance of a com-
ponent influences factors that are at play when selecting
suppliers and strategies. The data used for this analysis
have been gathered by means of case studies, conducted by
bachelor students during the Product Software course that
is part of the bachelor in Information Science curriculum at
Utrecht University. Because of the nature of the data collec-
tion process, we chose for a data selection process to enhance
the validity of the final dataset. Nevertheless, the general-
izability of the results is limited, because of the nature of
the data gathering process. Apart from that, twenty-seven
companies make up only a small part of the total Dutch
product software industry. Furthermore, we cannot state
that the Software Supply Networks include all the suppliers
or that the Product Deployment Contexts contain all com-
ponents. Some software vendors may not be aware of some
small (open source) components that have, consciously or
unconsciously, been incorporated into the end product.

The next step to take to generalize the findings presented
in this paper, is carrying out a large sample survey with
product software companies and perform an analysis on the
dataset, similar to the one employed in this paper. Also,

case studies using unique or representative cases [17] can
contribute to provide a higher level of generalization of the
findings presented in this paper. The same also applies for
the proposed matrix. Further validation, from a PDC or
system architectural perspective, is needed.

8. CONCLUSION

In this paper, we addressed supplier selection and strate-
gies from a software ecosystems and portfolio perspective,
using data gathered through twenty-seven case studies with
Dutch product software companies. Software products con-
sist of multiple components, only part of which developed
in-house. We created a matrix that classifies components
that are part of the direct running environment of a product.
First of all, a distinction between core and context compo-
nents was made. Core components are the essential building
blocks of the product while context components provide ad-
ditional functionalities resulting in added-value. In a second
level of decomposition, we distinguished between critical and
non-critical components. A critical component is a compo-
nent that is not easily interchangeable or that adds signif-
icant added value to the product. The presented matrix
can be valuable from both a Product Deployment Context
perspective as well as a system architectural perspective.

Four main supplier strategies were identified. Some soft-
ware vendors choose to become fully dependent on a large
software ecosystem orchestrator. While increasing supplier
dependence, it brings opportunities because of a perceived
guarantee of continuation of support as well as offered ad-
ditional benefits. On the total contrary, software vendors
opt for a minimal dependence. Software vendors also indi-
cated to be reviewing current supplier relationships because
of the advent of open source. Having to leverage continu-
ous support and maintenance, however, is experienced as a
drawback of open source. In addition, open source software
licenses need to be reviewed to avoid risks associated with
the inclusion of open source components within a product.

Software vendors employ criteria when selecting suppliers.
Critical core component supplier relationships have a high
perceived level of intimacy compared to non-critical compo-
nent suppliers. In addition, suppliers are selected based on
their software ecosystem health, a performance indicator of
an ecosystem. Also, support and maintenance plays a role
when selecting both core and context component suppliers,
especially when a component is classified as critical.

More research needs to be employed to provide further
evaluation and validation. Furthermore, studies need to be
addressed on software ecosystem selection to gain insight
into mechanisms that are at play when deciding on what
ecosystem to join.

9.
[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

V. Boucharas, S. Jansen, and S. Brinkkemper.
Formalizing software ecosystem modeling. In
Proceedings of the 1st International Workshop on
Open Component Ecosystems, pages 41-50, 2009.

S. Brinkkemper, I. van Soest, and S. Jansen. Modeling
of product software businesses: Investigation into
industry product and channel typologies. In
Information Systems Development, pages 307-325.
Springer, 2009.

E. den Hartigh, M. Tol, and W. Visscher. The health
measurement of a business ecosystem. In Proceedings
of the Furopean Network on Chaos and Complexity
Research and Management Practice Meeting, 2006.
M. Iansiti and R. Levien. The Keystone Advantage:
What the New Dynamics of Business Ecosystems
Mean for Strategy, Innovation, and Sustainability.
Harvard Business School Press, 2004.

M. Iansiti and R. Levien. Strategy as ecology. Harvard
Business Review, 82(3):68-78, 2004.

S. Jansen, S. Brinkkemper, and A. Finkelstein.
Providing transparency in the business of software: A
modeling technique for software supply networks.
Advances in Information and Communication
Technology, 243:677-686, 2007.

S. Jansen, S. Brinkkemper, and A. Finkelstein.
Component assembly mechanisms and relationship
intimacy in a software supply network. In 15th
International Annual EurOMA Conference, Special
Interest Session on Software Supply Chains, 2008.

S. Jansen, S. Brinkkemper, and A. Finkelstein.
Business network management as a survival strategy:
A tale of two software ecosystems. 1st International
Workshop on Software Ecosystems, 505:34-48, 2009.
S. Jansen, A. Finkelstein, and S. Brinkkemper.
Providing transparency in the business of software: A
modelling technique for software supply networks. In
Proceedings of the 8th IFIP Working Conference on
Virtual Enterprises, pages 677-686, 2007.

S. Jansen, A. Finkelstein, and S. Brinkkemper. A
sense of community: A research agenda for software
ecosystems. In ICSE 09: Proceedings of the 31st ICSE
Conference on Software Engineering, pages 187-190,
20009.

M. Maloni and W. C. Benton. Power influences in the
supply chain. Emerald Management Reviews,
21:(3):49-73, 2000.

A. Osterwalder and Y. Pigneur. Business Model
Generation: A Handbook for Visionaries, Game
Changers, and Challengers. Wiley, 2010.

K. Popp and R. Meyer. Profit from Software
Ecosystems: Professional Edition, Business Models,
Ecosystems and Partnerships in the Software
Industrys. Books on Demand GmbH, 2010.

C. Ruffin and C. Ebert. Using open source software in
product development: a primer. IEEE Software,
21(1):82-86, 2004.

J. L. Ward and J. Peppard. Strategic Planning for
Information Systems. Wiley, 3rd edition edition, 2002.
L. Xu and S. Brinkkemper. Concepts of product
software. Furopean Journal of Information Systems,
16(5):531-541, 2007.

[17] R. K. Yin. Case Study Research: Design and Methods.
Sage Publications, Inc, 2008.

